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Introduction
Ambient air pollution ranks high among 
risk factors for the global burden of disease 
(Lim et al. 2012), and is linked to several 
chronic noncommunicable conditions such 
as cardiovascular diseases (Bauer et al. 2010; 
Brook et al. 2010; Künzli et al. 2010), 
asthma (Bui et al. 2013; Jacquemin et al. 
2012; Künzli et al. 2009), chronic obstruc-
tive pulmonary diseases (COPD) (Andersen 
et al. 2011; Schikowski et al. 2014; Zanobetti 
et al. 2008), and cancers including lung 
(Raaschou-Nielsen et al. 2013a), cervical, 
and brain cancers (Raaschou-Nielsen et al. 
2011). Persons with type 2 diabetes mellitus 
(T2DM) are at increased risk to develop 
micro- and macrovascular diseases and 
reduced lung function (Jones et al. 2014; 
Kinney et al. 2014). Air pollution has also 
been shown to be more detrimental to 
diabetic patients, worsening their clinical 
outcomes (O’Neill et al. 2005; Raaschou-
Nielsen et al. 2013b; Whitsel et al. 2009; 
Zanobetti and Schwartz 2001).

More recent evidence is supportive 
of an air pollution effect on diabetes risk. 
Experimental evidence show that possible 

pathways may include endothelial dysfunc-
tion, overactivity of the sympathetic nervous 
system (Rajagopalan and Brook 2012), 
immune response alterations in visceral 
adipose tissues; endoplasmic reticulum stress 
resulting in alterations in insulin transduc-
tion (Sun et al. 2009), insulin sensitivity, 
and glucose metabolism; and alterations in 
mitochondria and brown adipocytes (Liu et al. 
2013; Rajagopalan and Brook 2012).

Papazafiropoulou et al. (2011) systema-
tically reviewed the etiologic association 
between environmental pollution and 
diabetes, taking into account studies on 
organic pollutants and secondary effects of air 
pollution on diabetic patients published up 
to November 2010. They described a positive 
association between environmental pollution 
and prevalent diabetes, as well as increased 
morbidity and mortality among diabetic 
patients. A number of pertinent studies have 
been published since this review, and thus 
far there is, to the best of our knowledge, 
no meta-analysis of the available evidence. 
We therefore systematically identified and 
reviewed the epidemiological evidence on the 
association between air pollution and diabetes 

mellitus, and synthesized the results of studies 
on the association with T2DM. 

Methods
Search strategy. We systematically searched 
electronic literature databases [MEDLINE 
(http://www.nlm.nih.gov/bsd/pmresources.
html), EMBASE (https://www.embase.
com), and ISI Web of Science (http://www.
webofknowledge.com)] for pertinent litera-
ture published up to 3 February 2014. Terms 
used in this search included “air pollution,” 
“air pollutants,” “particulate matter,” “PM10,” 
“PM2.5,” “nitrogen dioxide,” “NO2,” “NOx,” 
“ozone,” “soot,” “smog,” “diabetes mellitus,” 
“diabetes,” “T1DM,” “T2DM,” “type 1 
DM,” “type 2 DM,” “IDDM,” “NIDDM,” 
alone and in combination. We applied no 
filters for study designs. Reference lists of 
eligible articles were searched for further 
pertinent articles. After de-duplication, titles 
and abstracts were screened for eligibility and 
potentially relevant articles were retrieved as 
full texts. Screening was performed indepen-
dently by two reviewers and any discrepancies 
were resolved by discussion.

Inclusion and exclusion criteria. We 
included only original research published 
in English as a full publication in a peer-
reviewed journal. We accepted any type of 
study design. In eligible studies, the defini-
tion of air pollution and diabetes mellitus 
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Background: Air pollution is hypothesized to be a risk factor for diabetes. Epidemiological 
evidence is inconsistent and has not been systematically evaluated.

oBjectives: We systematically reviewed epidemiological evidence on the association between air 
pollution and diabetes, and synthesized results of studies on type 2 diabetes mellitus (T2DM).

Methods: We systematically searched electronic literature databases (last search, 29 April 2014) for 
studies reporting the association between air pollution (particle concentration or traffic exposure) and 
diabetes (type 1, type 2, or gestational). We systematically evaluated risk of bias and role of potential 
confounders in all studies. We synthesized reported associations with T2DM in meta-analyses using 
random-effects models and conducted various sensitivity analyses.

results: We included 13 studies (8 on T2DM, 2 on type 1, 3 on gestational diabetes), all 
conducted in Europe or North America. Five studies were longitudinal, 5 cross-sectional, 
2 case–control, and 1 ecologic. Risk of bias, air pollution assessment, and confounder control 
varied across studies. Dose–response effects were not reported. Meta-analyses of 3 studies on 
PM2.5 (particulate matter ≤ 2.5 μm in diameter) and 4 studies on NO2 (nitrogen dioxide) showed 
increased risk of T2DM by 8–10% per 10-μg/m3 increase in exposure [PM2.5: 1.10 (95% CI: 
1.02, 1.18); NO2: 1.08 (95% CI: 1.00, 1.17)]. Associations were stronger in females. Sensitivity 
analyses showed similar results.

conclusion: Existing evidence indicates a positive association of air pollution and T2DM 
risk, albeit there is high risk of bias. High-quality studies assessing dose–response effects are 
needed. Research should be expanded to developing countries where outdoor and indoor air 
 pollution are high.
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had to be clearly stated. Air pollution had 
to be outdoor (ambient, including traffic-
related), and we accepted any type of 
assessment including particle concentra-
tion in the air or indicators of long-term 
traffic exposure. Diabetes mellitus had to be 
physician diagnosed or based on the use of 
antidiabetic medications. We included any 
type of diabetes mellitus (type 1, type 2, and 
gestational). Eligible studies had to report 
quantitative measures of association between 
air pollution and diabetes mellitus, and their 
95% confidence intervals (CIs) (or enough 
data to allow derivation of this association). 
We excluded studies that were based on 
the effect of blood markers, and not clearly 
defining clinical outcomes. Studies testing 
only whether diabetes status would modify 
the association between air pollution and 
health outcomes were not considered in this 
review. Animal studies were excluded.

For the meta-analysis, only studies on 
individual type 2 diabetes risk were included. 
We included all studies that quantified 
particle concentrations as “per ... μg/m3” or 
“ppb.” If the diabetes type was not clearly 
stated, we considered diagnoses of diabetes 
in nonpregnant adults (≥ 18 years age) as 
diagnoses of T2DM because > 90% of new 
diagnoses of adult diabetes is type 2 diabetes 
(Alberti and Zimmet 1998).

Data extraction.  We extracted the 
following data from the eligible studies: year 

of study, study setting, study design, year of 
publication, population demographics, study 
definition of diabetes and assessment of air 
pollution exposure, confounder adjustments, 
and effect modification assessments. We 
extracted data on the effect estimates (unad-
justed and final model) of the association 
(and their 95% CIs) between air pollution 
and diabetes.

Data were extracted independently by two 
reviewers and disagreements were resolved by 
discussion.

Meta-analysis. We used random-effects 
models to synthesize the associations between 
air pollution and T2DM (Lau et al. 1997). 
Random-effect models give more weight 
to smaller studies and have typically wider 
CIs because in addition to the within-study 
variance, they also consider potential varia-
tion between the true effects that all included 
studies estimate. We used fixed-effects 
models (which assume that all studies share a 
common true effect) in a sensitivity analysis.

We used risk ratios as measure of asso-
ciation across all studies. When hazard ratios 
and incidence risk ratios were reported, 
we directly considered them as risk ratios. 
Because diabetes is not very common, we 
considered reported odds ratios as equivalent 
to risk ratios. For studies with estimates of 
association from multiple particle concen-
tration sources, we chose the estimates 
modelled at participants’ residences (land-use 

regression, kriging, or satellite-based esti-
mates). We used the effect estimates reported 
by the study authors as “main model” or 
“fully adjusted model.” We used estimates of 
association and their standard errors reported 
as “per 10 μg/m3” of exposure and we 
converted other reported quantities or units 
where necessary.

We described the between-study hetero-
geneity using the I2 metric and the between-
studies’ variance using Tau2. We assessed 
publication bias using the Egger’s test for 
asymmetry (Egger et al. 1997). We conducted 
sensitivity analyses including only studies that 
a) measured air pollution exposure before 
DM diagnosis, b) comprised both males and 
females, and c) were longitudinal, and we 
applied a fixed-effects analysis. All analyses 
were performed with Stata version 12 
(StataCorp, College Station, TX, USA) using 
the “metan” command. p-Values were two-
tailed and p < 0.05 was considered nominally 
statistically significant.

For reporting, we followed the Meta-
analysis Of Observational Studies in 
Epidemiology (Stroup et al. 2000) and the 
Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis (Moher et al. 
2010) guidelines.

Results
The database search yielded 636 records after 
de-duplication, which were screened on title/
abstract level for eligibility (Figure 1). Sixteen 
potentially eligible articles were screened on 
full-text level, and 3 were excluded (Figure 1). 
Thirteen studies were included (Table 1). 
There were 5 longitudinal studies (Andersen 
et al. 2012; Chen et al. 2013; Coogan et al. 
2012; Krämer et al. 2010; Puett et al. 2011), 
5 cross-sectional studies (Brook et al. 2008; 
Dijkema et al. 2011; Fleisch et al. 2014; 
Malmqvist et al. 2013; van den Hooven 
et al. 2009), 2 case–control studies (Hathout 
et al. 2002, 2006), and 1 ecologic study 
(Pearson et al. 2010). Two studies were on 
type 1 diabetes (Hathout et al. 2002, 2006); 
3 studies on gestational diabetes (GDM) 
(Fleisch et al. 2014; Malmqvist et al. 2013; 
van den Hooven et al. 2009), and 8 studies 
on T2DM (Andersen et al. 2012; Brook 
et al. 2008; Chen et al. 2013; Coogan et al. 
2012; Dijkema et al. 2011; Krämer et al. 
2010; Pearson et al. 2010; Puett et al. 2011). 
Seven non-ecological studies on T2DM were 
selected for quantitative synthesis (with the 
exclusion of Pearson et al. 2010). Air pollu-
tion estimates from these studies were based 
on land-use regression (Andersen et al. 
2012; Brook et al. 2008; Dijkema et al. 
2011; Krämer et al. 2010; Puett et al. 2011), 
kriging (Coogan et al. 2012), and satellite-
derived estimates (Chen et al. 2013). All 
studies were conducted in Europe or North Figure 1. Results of systematic literature search.

1,074 records identified
through database search:
MEDLINE, EMBASE, and

ISI Web of Science

438 duplicate records
identified and excluded

620 records identified as
not addressing the research

question and excluded based 
on title/abstract screening

2 studies excluded for being abstracts 
presented in meetings without a full

publication; 1 excluded for 
not providing effect estimate

13 studies included in the
qualitative synthesis:

5 studies on type 1 or gestational 
diabetes excluded; 1 type 2 diabetes

study excluded for being an
ecologic study

636 records identified and
screened for eligibility

16 full-text articles
assessed for eligibility

7 studies on type 2 diabetes
included in the quantitative synthesis

•  8 type 2 diabetes
•  2 type 1 diabetes
•  3 gestational diabetes
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America. Tables 1 and 2 and Supplemental 
Material, Table S1, provide an overview of 
the 13 eligible studies. Table 3 summarizes 
the data reported in the studies synthesized 
in meta-analyses.

In the Supplemental Material, Table S2 
provides an overview of potential sources 
of bias and how they were assessed by the 
13 studies. These are discussed in detail below.

Bias due to outcome assessment. As 
shown in Table 2, some studies relied on self-
reported, physician-diagnosed DM (Coogan 
et al. 2012; Dijkema et al. 2011; Krämer 
et al. 2010), whereas others linked partici-
pants to established databases to identify 
cases (Andersen et al. 2012; Brook et al. 
2008; Chen et al. 2013; Hathout et al. 2002, 
2006; Malmqvist et al. 2013). Additional 
steps were taken by some studies with self-
reported outcomes to test the validity of the 
DM diagnosis. These steps included sending 
a follow-up questionnaire with the same ques-
tions about diabetes (Krämer et al. 2010) and 
confirmation from medical records provided 
by physicians (Coogan et al. 2012). Dijkema 
et al. (2011) further tested participants who 
did not report physician-diagnosed diabetes, 
to identify undiagnosed cases. 

Bias due to exposure assessment. The 
reviewed studies used different approaches to 
assess exposure of participants to air pollu-
tion, including modeled concentrations of 
various particulate matters, nitrogen oxides 
(NOx), sulfates, ozone, and various proxies 
to estimate traffic-related pollution, with 
varying buffer levels. The studies are also 
hetero geneous with regard to the lag time 
considered for exposure assessment. Only the 
Danish cohort (Andersen et al. 2012) assessed 
the impact of different lag times, albeit with 
little evidence for substantial differences in 
effects (see Supplemental Material, Table S1). 
In the absence of a biological basis for the 
latency between exposure and diagnosis of 
diabetes, different lag times should be tested. 
Overall, the diversity of exposure measure-
ment makes it difficult to compare the 
reported effect  estimates across these studies.

Bias due to confounder adjustment. Indoor 
air pollution and smoking. Beyond adjust-
ment for basic DM risk factors at baseline (see 
Supplemental Material, Table S2), Krämer 
et al. (2010) also adjusted for environmental 
tobacco smoke (ETS), indoor heating with 
fossil fuels, as well as occupational exposure 
to dust, fumes and extreme temperatures; 

Andersen et al. (2012) also adjusted for ETS. 
One study done in children considered ETS 
exposure (Hathout et al. 2006).

Demographics, physical activity, and 
dietary factors. The longitudinal studies 
uniformly adjusted for age, body mass index 
(BMI), and sex (when study population 
includes both sexes). The studies on women 
did not adjust for dietary factors, and all 
longitudinal studies but one adjusted for 
alcohol consumption and physical activity 
(see Supplemental Material, Table S1). The 
other studies assessed confounding by age and 
BMI except the case–control studies, which 
did not consider the children’s BMI in their 
models. The GDM studies mostly considered 
maternal alcohol consumption (but not 
dietary factors) whereas the cross-sectional 
T2DM studies did not consider either factor 
(see Supplemental Material, Table S1).

Socioeconomic status. There was a 
uniform adjustment for socioeconomic status 
in all studies, although on different scales. 
At the individual level, educational attain-
ment as a socioeconomic determinant was 
most commonly used across studies, and a 
few studies additionally considered house-
hold income and ethnicity (see Supplemental 

Table 1. Characteristics of the studies on the relationship between air pollution and diabetes mellitus.

Source Location Years of study Study design and duration of follow-up Population (n) and age (years) of participants
Krämer et al. 2010a Ruhrgebiet, Germany 1990–2006 Longitudinal: Study on the Influence of Air Pollution 

on Lung Inflammation and Aging 
Follow-up: 16 years

n = 1,775 Caucasian women without 
T2DM at baseline, 54–55 years

Andersen et al. 2012a Copenhagen and Aarhus, 
Denmark

(1993–1997) –2006 Longitudinal: Danish Diet, Cancer and Health cohort 
Follow-up: 9.7 years

n = 51,818 Caucasians without DM at 
baseline, 50–65 years

Puett et al. 2011a Metropolitan Statistical 
Areas (MSA) in north-
eastern and midwestern 
states of USA

1989–2009 Longitudinal, with 2 cohorts: Nurses’ Health Study 
and Health Professionals Follow-up Study 
Follow-up: 20 years

n = 74,412 female nurses 30–55 years 
and 15,048 male health professionals 
40–75 years, without T2DM at baseline

Coogan et al. 2012a Los Angeles, California, 
USA

1995–2005 Longitudinal: Black Women’s Health Study 
Follow-up: 10 years

n = 3,992 African-American women, 
without DM at baseline and 21–69 years

Chen et al. 2013a Ontario, Canada (1996–2005) –2010 Longitudinal 
Follow-up: 8 years

n = 62,012 Canadians without DM, 
≥ 35 years

Brook et al. 2008a Hamilton and Toronto, 
Ontario, Canada

1992–1999 Cross-sectional n = 7,634 patients who attended two 
respiratory clinics in Hamilton and 
Toronto, ≥ 40 years

van den Hooven et al. 2009 Rotterdam, Netherlands 2002–2006 Cross-sectional: Generation R study n = 7,399 pregnant women, who had 
delivery date in the study period, 
21–38 years

Dijkema et al. 2011 Westfriesland, Netherlands 1998–2000 Cross-sectional: Hoorn Screening Study for T2DM n = 8,018 Caucasian residents, 
50–75 years

Malmqvist et al. 2013 Scania, Sweden 1999–2005 Cross-sectional: The Swedish Medical Birth Registry. n = 81,110 women who had singleton 
deliveries during the study period

Hathout et al. 2006 California, USA 2002–2003 Case–control 
Follow-up: retrospectively from birth until 
diagnosis of T1DM

n = 402 children (102 with T1DM and 
300 age-matched controls), 1–12 years, 
receiving care at Loma Linda University 
Pediatric Center

Hathout et al. 2002 California, USA 2002 Case–control 
Follow-up: retrospectively from birth until 
diagnosis of T1DM

n = 100 children (61 cases: 30 had onset 
≤ 5 years and 31 > 5 years) (39 age-
matched controls: 19 were ≤ 5 years 
and 20 were > 5 years) receiving care at 
Loma Linda University Pediatric Center

Fleisch et al. 2014 Boston, Massachusetts, 
USA

1999–2002 Cross-sectional: Project Viva Cohort n = 2,093 second-trimester pregnant 
women without known diabetes

Pearson et al. 2010 USA 2004–2005 Ecologic n = 3,082 counties of USA

Abbreviations: T2DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. 
aIncluded in meta-analysis.
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Material, Table S1). Few studies considered 
spatial socioeconomic confounding in forms 
of unemployment rate, urban/rural residence, 
neighborhood income and neighborhood 

socioeconomic status score (see Supplemental 
Material, Table S1). Overall, there was suffi-
cient consideration for individual-level socio-
economic status, but the insufficient control 

of area-level socioeconomic status may 
increase the risk of bias.

Co-morbidities. Some co-morbidities 
associated with diabetes may also be associated 

Table 2. Exposure and outcome definitions.

Source Outcome Definition of outcome Exposure Definition of exposure Exposure estimates
Krämer et al. 

2010a 
Incident 

T2DM
Self-reported, 

physician-diagnosed 
T2DM

PM10, PM, 
PM2.5, NO2, 
and traffic 
exposure

5-year means of PM10 and NO2 in an 8-km 
grid from monitoring stations, before 
baseline

Median (25th–75th percentile) 
Monitoring stations (μg/m3):  
 PM10: 46.9 (44–54.1)  
 NO2: 41.7 (23.3–48.2)

Traffic PM and NO2 in a 1-km grid, in 
1 year, from emission inventory

Traffic emission inventory (tons/year/km2):  
 PM: 0.54 (0.22–1.09)

Traffic PM2.5 and NO2
b from a (1-year 

measurement) LUR model. Distance from 
the next major road with > 10,000 cars 
per day

NO2: 12 (5.4–24.4) 
LUR soot (10–5 m): 1.89 (1.67–2.06) 
NO2 (μg/m3): 34.5 (23.8–38.8) 
% participants living < 100 m from busy road: 15.8

Andersen et al. 
2012a 

Incident DM Confirmed DM cases 
from the Danish 
National Diabetes 
Register

NO2, NOx, 
traffic 
exposure

35b- and 15-year mean levels of NO2 
and NOx, from the Danish AirGIS model 
before baseline

Median (IQR) 
35-year NO2 and NOx (μg/m3): 14.5 (4.9) and 20.9 (11.4)  
15-year NO2 and NOx (μg/m3): 15.3 (5.6) and 22.1 (12)

1-year mean NO2 and NOx at baseline 1-year NO2 and NOx at baseline (μg/m3): 15.4 (5.6) and 
20.3 (10.9)

1-year mean NO2 and NOx at follow-up 1-year NO2 and NOx at follow-up (μg/m3): 15.2 (5.7) and 
21.5 (12)

Major road (with annual traffic density of 
≥ 10,000) within 50 m of residence.

% major road within 50 m: 8.1

Traffic load within 100 m of residence 
(103 vehicles/km/day)

Traffic load within 100 m (103 vehicles/km/day): 0.34 
(1.3)

Puett et al. 
2011a 

Incident 
T2DM

DM according to the 
National Diabetes 
Data Group Criteriac 

PM2.5, PM10, 
PM10–2.5

Average PM2.5
b, PM10, and PM10–2.5 

concentrations, from LUR model, 
12 months before diagnosis

Mean ± SD 
PM2.5 (μg/m3): 18.3 ± 3.1 for HPFS and 17.5 ± 2.7 for NHS
PM10 (μg/m3): 28.5 ± 5.5 for HPFS and 26.9 ± 4.8 for NHS 
PM10–2.5 (μg/m3): 10.3 ± 3.3 for HPFS and 9.4 ± 2.9 for NHS

Coogan et al. 
2012a 

Incident 
T2DM

Self-reported, 
physician-diagnosed 
T2DM

PM2.5, NOx, 
traffic 
exposure

1-year mean PM2.5
b during follow-up, 

assigned by kriging model
Mean ± SD

PM2.5 (μg/m3): 20.7 ± 2.1 
Median (25th–75th percentile) PM2.5 (μg/m3): 21.1 
(20.3–21.6)

1-year mean NOx the year after follow-up, 
assigned by LUR model

Mean ± SD 
NOx (ppb): 43.3 ± 11 

Median (25th–75th percentile) 
NOx (ppb): 41.6 (36.9–49.2)

Chen et al. 
2013a 

Incident DM Physician-diagnosed 
DM from Ontario 
database

PM2.5 6-year mean PM2.5
b during baseline/ 

follow-up, obtained from satellite-based 
estimates at 10 x 10 km resolution

Mean (range) PM2.5 (μg/m3): 
 10.6 (2.6–19.1)

Brook et al. 
2008a 

Prevalent 
DM

Physician-diagnosed 
DM from Ontario 
Health Insurance Plan 
and Ontario Health 
Discharge Database

NO2 NO2
b assigned by LUR models developed 

from mean field measurements within 
3 years, from Hamilton and Toronto, 
Ontario, Canada

Median (25th–75th percentile) 
NO2 (ppb) 

Males: 
Hamilton: 15.2 (13.9–17.1); Toronto: 23 (20.8–25) 

 Females:
Hamilton: 15.3 (14–17); Toronto: 22.9 (20.8–24.7)

van den Hooven 
et al. 2009 

Prevalent 
gestational 
DM (GDM)

GDM diagnosed 
according to the 
Dutch midwifery and 
obstetric guidelines

Traffic 
exposure

Distance-weighted traffic density (DWTD) 
within a 150-m radius around residence 
(vehicles/24 hr × m)

Median (P25–P75) 
DWTD (vehicles/24 hr × m): 5.5 × 105 

(1.6 × 105 – 1.2 × 106)
Proximity to a major road (> 10,000 

vehicles/day)
Proximity to a major road (m): 143 (74–225)

Dijkema et al. 
2011 

Prevalent 
T2DM

Self-reported 
physician-diagnosed 
T2DM. Laboratory-
based diagnosis for 
undetected cases

NO2, traffic 
exposure

1-year mean NO2 assigned by LUR model Median (25th–75th percentile) 
NO2 (μg/m3): 15.2 (14.2–16.5)

Distance to the nearest main road 
(≥ 5,000 vehicles/day)

Distance to nearest main road (m): 140 (74–220)

Traffic flow at the nearest main road 
(vehicles/24 hr)

Traffic flow at the nearest main road (103 vehicles/24 hr): 
7.31 (5.87–9.67)

Total traffic per 24 hr on all roads within a 
250-m circular buffer around the address

Traffic within 250-m buffer (103 vehicles/24 hr): 
680 (516–882)

Malmqvist 
et al. 2013 

Prevalent 
GDM

GDM as defined in the 
Swedish Medical 
Birth Registry

NOx, traffic 
exposure

Monthly and trimester means of NOx 
assigned by dispersion modeling at a 
spatial resolution of 500 × 500 m over the 
duration of the pregnancy

Quartiles of NOx exposure (μg/m3): 
Q1: 2.5–8.9  
Q2: 9.0–14.1  
Q3: 14.2–22.6  
Q4: > 22.7

Traffic density within a 200-m radius Categories of traffic density within 200 m (vehicles/min):
1: no road  
2: < 2  
3: 2–5  
4: 5–10  
5: > 10

Table continued
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with air pollution. These co-morbidities may 
include hypertension, myocardial infarc-
tion, stroke, asthma, and chronic obstruc-
tive pulmonary disease (Brook et al. 2010; 
Pelle et al. 2012; Vojtková et al. 2012). The 
longitudinal studies considered some of these 
co-morbidities (see Supplemental Material, 
Table S1). Participants with co-morbidities 
were not excluded from any T2DM study.

Effect modification. Several studies 
reported stronger effects in women compared 
with men (Andersen et al. 2012; Brook et al. 
2008; Chen et al. 2013; Dijkema et al. 2011). 
Other subgroups reported with potentially 
increased susceptibility include subjects with 
low education (Andersen et al. 2012; Chen 
et al. 2013; Krämer et al. 2010), COPD 

(Andersen et al. 2012; Chen et al. 2013), 
asthma (Andersen et al. 2012), higher waist-
to-hip ratio (Andersen et al. 2012), and higher 
level of subclinical inflammation (Krämer 
et al. 2010), nonsmokers (Andersen et al. 
2012), and subjects < 50 years or > 65 years 
of age (Chen et al. 2013) (see Supplemental 
Material, Table S1). No study assessed inter-
action between different air pollutants, air 
pollutants and noise, or interaction between 
air pollutants and genetic polymorphisms.

Loss to follow-up. Losses to follow-up 
and healthy survivor bias present common 
problems in epidemiological studies. Puett 
et al. (2011) reported a loss of < 10% in both 
studied cohorts over 20 years of follow-up, 
and Coogan et al. (2012) reported < 20% 

loss of cohort over 10 years of follow-up. 
The other longitudinal studies did not report 
losses to follow-up. None of the studies 
included sensitivity analyses to estimate the 
effect of the healthy survivor bias.

Publication bias. Although selective 
reporting and publication bias cannot be 
ruled out, considering a high probability that 
negative findings will not be published, we 
found no indication for such sources of bias 
(p-value of Egger’s test > 0.2). Some studies 
reported negative findings. However, most 
studies had several markers of air pollu-
tion available, and it remains unclear if 
some markers have been measured but not 
reported, so some selective reporting may 
have occurred.

Table 2. Continued.

Source Outcome Definition of outcome Exposure Definition of exposure Exposure estimates
Hathout et al. 

2006 
Prevalent 

T1DM
Physician-diagnosed 

T1DM from the 
database of Loma 
Linda University 
Pediatric Center

O3, NO2, SO2, 
SO4, and 
PM10

Average monthly pollutant exposure 
(obtained from the U.S. EPA and 
California Air Resources Board) from 
birth until diagnosis for cases and until 
enrollment for controls, assigned to 
residential ZIP codes

Mean (95% CI) 
For cases:  
 O3: 29.4 (28, 30.8) ppb  
 SO4: 3.6 (3.4, 3.87) μg/m3 

 SO2: 1.6 (1.41, 1.75) ppb  
 NO2: 30.3 (28.4, 32.3) ppb  
 PM10: 48.6 (45.9, 51.3) μg/m3 
For controls:  
 O3: 25.8 (25.2, 26.3) ppb 
 SO4: 3.3 (3.2, 3.36) μg/m3  
 SO2: 1.5 (1.42, 1.5) ppb 
 NO2: 29.7 (29.1, 30.4) ppb 
 PM10: 47.4 (46.3, 48.5) μg/m3

Hathout et al. 
2002 

Prevalent 
T1DM

Physician-diagnosed 
T1DM from the 
database of Loma 
Linda University 
Pediatric Center

O3, NO2, SO2, 
SO4, and 
PM10

Average monthly pollutant exposure 
(obtained from the U.S. EPA and 
California Air Resources Board) from 
birth until diagnosis for cases and until 
enrollment for controls, assigned to 
residential ZIP codes

Mean ± SD
For cases: 
 O3: 32.5 ± 5.22 ppb 
 SO4: 5.52 ± 0.75 μg/m3 

 SO2: 0.67 ± 0.55 pphm 
 NO2: 23.7 ± 7.91 ppb 
 PM10: 59.3 ± 12.9 μg/m3  
For controls:  
 O3: 26.7 ± 9.6 ppb 
 SO4: 5.88 ± 1.04 μg/m3 

 SO2: 1.29 ± 0.92 pphm 
 NO2: 24.7 ± 7.26 ppb 
 PM10: 49.6 ± 14.7 μg/m3

Fleisch et al. 
2014

Prevalent 
GDM

Failed GCTd with ≥ 2 
high values on the 
OGTTe

PM2.5 and black carbon from central sites 
within 40 km of residence

Mean ± SD 
From central sites:  
 PM2.5: 10.9 ± 1.4 μg/m3  
 Black carbon: 0.9 ± 0.1 μg/m3

PM2.5 and black carbon from spatio-
temporal models

From spatiotemporal models:  
 PM2.5: 11.9 ± 1.4 μg/m3 

 Black carbon: 0.7 ± 0.2 μg/m3

Neighborhood traffic density 
[(vehicles/day) × km] within 100 m

Traffic density: 1,621 ± 2,234 (vehicles/day × km)

Home roadway proximity (≤ 200 m) Roadway proximity: 281 ± 13
Pearson et al. 

2010 
Prevalent 

DM
County-level DM 

prevalence from 
the Centers for 
Disease Control and 
Prevention

PM2.5 County annual mean level of PM2.5 
obtained from the U.S. EPA as 36-km 
model, 12-km model, and surface monitor 
data

PM2.5 (μg/m3):
2004: 
 36-km model: Q1 mean = 7.71; Q4 mean = 12.11 
 12-km model: Q1 mean = 7.78; Q4 mean = 11.77 
 Ground data: Q1 mean = 9.43; Q4 mean = 12.69  
2005: 

 36-km model: Q1 mean = 7.69; Q4 mean = 12.75  
 12-km model: Q1 mean = 8.41; Q4 mean = 12.38  
 Ground data: Q1 mean = 9.51; Q4 mean = 13.65

Abbreviations: AirGIS, Air geographic information system; DM, diabetes mellitus; DWTD, distance-weighted traffic density; EPA, Environmental Protection Agency; GDM, gestational 
diabetes mellitus; HPFS, Health Professionals Follow-up Study; LUR, land-use regression; NHS, Nurses’ Health Study; NO2, nitrogen dioxide; NOx, nitrogen oxides; O3, ozone; OGTT, oral 
glucose tolerance test; PM, particulate matter; PM10, particulate matter ≤ 10 μm in diameter; PM10–2.5, particulate matter between 2.5 and 10 μm in diameter; PM2.5, particulate matter 
≤ 2.5 μm in diameter; SO2, sulfur dioxide; SO4, sulfate; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus. 
aStudies included in meta-analysis. bAir pollution estimates pooled in the meta-analysis. cElevated plasma glucose concentration on at least two different occasions, one or more DM 
symptoms and a single elevated plasma glucose concentration, or treatment with hypoglycemic medication. dGlucose challenge test: serum glucose 1 hr after a non-fasting 50-g oral 
glucose load. eOral glucose tolerance test: serum glucose 3 hr after a fasting 100-g glucose load. 



Eze et al.

386 volume 123 | number 5 | May 2015 • Environmental Health Perspectives

Meta-analysis  of studies reporting 
the association of air pollution and risk of 
T2DM. Results of seven studies reporting on 
risk of T2DM [three on particulate matter 
with diameter ≤ 2.5 μm (PM2.5) and four 
on nitrogen dioxide (NO2)] were consid-
ered for quantitative synthesis. All studies 
synthesized for PM2.5 were longitudinal. For 
NO2, two were longitudinal and two were 
cross-sectional.

The pooled relative risks of T2DM per 
10-μg/m3 increase in exposure to PM2.5 
(Figure 2) and NO2 (Figure 3) were 1.10 
(95% CI: 1.02, 1.18) and 1.08 (95% CI: 
1.00, 1.17), respectively. The effect was more 
pronounced in females than in males [NO2: 
1.15 (95% CI: 1.05, 1.27) vs. 0.99 (95% CI: 
0.93, 1.07); PM2.5: 1.14 (95% CI: 1.03, 
1.26) vs. 1.04 (95% CI: 0.93, 1.17), respec-
tively] per 10-μg/m3 increase in exposure. The 
relative risks were similar across all sensitivity 
analyses (Table 4). We observed substantial 
statistical heterogeneity with NO2 studies 
(Table 4). Egger’s test was consistently > 0.2 
(p-value) in all cases.

Discussion
In this systematic review, we considered 
13 studies on different types of diabetes. 
The identified epidemiological evidence is 
highly diverse: Levels, timing, and assess-
ment of exposure varied, as did the outcome 
definitions, measures of association, and 
degree of confounder control. The studies 
included persons with different age ranges 
and settings, and some populations included 
only women. Although there is a risk of bias, 
the results of the meta-analyses indicate a 
positive association between traffic-related air 
 pollution and T2DM.

Pathophysiologic mechanisms of DM–
air pollution association. There is strong 
evidence supporting the role of inflamma-
tion in T2DM (Donath and Shoelson 2011; 
Sjöholm and Nyström 2006). Chronic 
activation of inflammatory mechanisms can 
contribute to chronic insulin resistance and 
subsequent T2DM. Air pollution has been 
shown to be inflammatory (Liu et al. 2013; 
Rajagopalan and Brook 2012). Its potential 
mechanisms in mediating T2DM include 
pulmonary and systemic inflammation, 
directly releasing cytokines, alterations in 
glucose homeostasis through defective insulin 
signaling in tissues, immune cells activation 
in visceral adipose tissues potentiating inflam-
mation (Sun et al. 2009; Xu et al. 2010; Yan 
et al. 2011), and endoplasmic reticulum 
stress in the lung and liver in relation with 
hepatocyte and alveolar cells (Liu et al. 2013; 
Rajagopalan and Brook 2012). PM2.5 also 
acts as a hypothalamic stressor, inducing 
peripheral inflammation and abnormali-
ties in glucose metabolism (Liu et al. 2013; 

Purkayastha et al. 2011). PM2.5 was also 
shown to mediate dysfunctional brown 
adipose and mitochondrial tissues (Liu et al. 
2013; Rajagopalan and Brook 2012), which 
is one of the systemic pathologies in T2DM 
(Lowell and Shulman 2005).

Chuang et al. (2010) demonstrated 
that exposure to air pollution [PM ≤ 10 μm 
(PM10) and ozone] exposure leads to altera-
tion in blood pressure, blood lipids, and 
hemoglobin A1c, a marker of blood glucose 
control. Kelishadi et al. (2009) found positive 

associations between exposure to PM10, NO2, 
and insulin resistance among children in Iran. 
Thiering et al. (2013) later found a positive 
association between residential proximity to 
traffic, particulate matter (PM10), NO2, and 
risk of insulin resistance [homeostatic model 
assessment (HOMA-IR)] among children 
who were part of a birth cohort in Germany. 
Exposure to traffic-related air pollution is also 
associated with impaired glucose tolerance in 
pregnancy (Fleisch et al. 2014). Experimental 
evidence also exists for the association of 

Figure 2. PM2.5 and risk of T2DM. Where I2 is the variation in effect estimates attributable to heterogeneity, 
D + L (DerSimonian and Laird) overall is the pooled random effect estimate of all studies. I-V (inverse 
variance) overall is the pooled fixed effects estimate of all studies. Weights are from random-effects 
analysis. %Weight (D + L) is the weight assigned to each study, based on the inverse of the within- and 
between-study variance. The size of the blue boxes around the point estimates reflects the weight 
assigned to each study. The summarized studies were adjusted for age, sex, BMI, smoking, alcohol 
consumption, and socioeconomic status. 

  %
 Risk ratio  Weight
Source (95% CI) (D + L) n

Males 

Puett et al. 2011 1.18 (0.82, 1.72) 4.20 15,048

Chen et al. 2013 1.03 (0.91, 1.16) 39.70 27,905

D + L subtotal (I 2 = 0.0%, p = 0.486) 1.04 (0.93, 1.17) 43.90

I-V subtotal 1.04 (0.93, 1.17)

Females
Puett et al. 2011 1.05 (0.87, 1.26) 17.07 74,412

Coogan et al. 2012 1.63 (0.78, 3.42) 1.06 3,992

Chen et al. 2013 1.17 (1.03, 1.32) 37.97 34,107

D + L subtotal (I 2 = 0.0%, p = 0.405) 1.14 (1.03, 1.26) 56.10

I-V subtotal 1.14 (1.03, 1.26)

D + L overall (I 2 = 0.0%, p = 0.473) 1.10 (1.02, 1.18) 100.00

I-V overall 1.10 (1.02, 1.18)

Reduced risk Increased risk 
10.5 2 4

Risk ratio

Table 3. Data synthesized for meta-analysis.

Source Population Pollutant
Assignment of  

individual exposure
Reported fully adjusted estimate  

(95% CI)a

Krämer et al. 2010 Females NO2 LUR model 1.42 (1.16, 1.73) per 15 μg/m3 of exposure
Andersen et al. 2012 Females NO2 LUR model 1.07 (1.01, 1.13) per 4.9 μg/m3 of exposure

Males NO2 LUR model 1.01 (0.97, 1.07) per 4.9 μg/m3 of exposure
Both NO2 LUR model 1.04 (1.00, 1.08) per 4.9 μg/m3 of exposure

Brook et al. 2008 Females NO2 LUR model 1.04 (1.00, 1.08) per 1 ppb of exposure
Males NO2 LUR model 0.99 (0.95, 1.03) per 1 ppb of exposure
Both NO2 LUR model 1.015 (0.98, 1.049) per 1 ppb of exposure

Puett et al. 2011 Females PM2.5 LUR model 1.02 (0.94, 1.09) per 4 μg/m3 of exposure
Males PM2.5 LUR model 1.07 (0.92, 1.24) per 4 μg/m3 of exposure
Both PM2.5 LUR model 1.03 (0.96, 1.10) per 4 μg/m3 of exposure

Chen et al. 2013 Females PM2.5 Satellite-based estimates 1.17 (1.03, 1.32) per 10 μg/m3 of exposure
Males PM2.5 Satellite-based estimates 1.03 (0.91, 1.16) per 10 μg/m3 of exposure
Both PM2.5 Satellite-based estimates 1.11 (1.02, 1.21) per 10 μg/m3 of exposure

Coogan et al. 2012 Females PM2.5 Kriging model 1.63 (0.78, 3.44) per 10 μg/m3 of exposure
Dijkema et al. 2011 Females NO2 LUR model 1.03 (0.90, 1.16) per 10 μg/m3 of exposure

Males NO2 LUR model 0.97 (0.87, 1.09) per 10 μg/m3 of exposure
Both NO2 LUR model 1.00 (0.94, 1.06) per 10 μg/m3 of exposure

Abbreviations: LUR, land-use regression; NO2, nitrogen dioxide; PM2.5, particulate matter ≤ 2.5 μm in diameter. 
aAll odds ratio, hazard ratio, and incident risk ratio estimates were converted to per 10 μg/m3 of exposure for meta-
analysis. Estimates from Dijkema et al. (2011) were derived from reported nonlinear estimates. 
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air pollution and type 1 diabetes (T1DM). 
Ozone is known to alter T-cell dependent 
immune response, predisposing to auto-
immune diseases (Krishna et al. 1998). It 
may also damage the beta cells of the pancreas 
possibly as a result of pulmonary reactive 
oxidative species production and oxidative 
stress, leading to reduced insulin secretion 
(Brenner et al. 1993; Kelishadi et al. 2009). 
Together with sulfate, ozone may have apop-
totic properties on the beta cells (Hathout 
et al. 2006). The use of antioxidant prophy-
laxis for T1DM also points to the possibility 
of oxidative or inflammatory mechanisms in 
T1DM (Albright and Goldstein 1996).

Strengths and limitations. Although 
we applied a very broad search strategy and 
accepted any study design, there are few 
published studies on the association of air 
pollution with T1DM or GDM. In addition, 
some studies did not allow distinguishing 
adult T1DM from T2DM. Only three of the 
seven synthesized studies explicitly analyzed 
the T2DM risk (Coogan et al. 2012; Dijkema 
et al. 2011; Krämer et al. 2010). However, 
because > 90% of adult diabetes diagnoses are 
T2DM, this is unlikely to substantially affect 
the conclusions. Overall, the available data 
are not sufficient to evaluate associations with 
these diabetes types.

Our analysis on the association with 
T2DM was based on results from primary 
studies with unclear to high risk of bias and 
high diversity among the included studies. 
We took this into account by using effect 
estimates modeled to participants’ residences, 
converting all effect estimates to a compa-
rable unit (per 10 μg/m3 of exposure), 
stratifying analyses by sex, including only 
longitudinal studies, and performing other 
sensitivity analyses.

The high diversity among the studies was 
reflected in our observation of substantial 
heterogeneity in the meta-analysis for NO2 
(Table 4), which synthesized longitudinal and 
cross-sectional data. This was not observed 
for PM2.5, for which all studies were longi-
tudinal. However, the number of studies was 
too small to further analyze this heterogeneity.

Prospects. Future studies should report 
scales of exposure assessment (pollutant quanti-
fication and traffic exposure proxies) that allow 
direct comparisons with existing evidence. 
It would be important to apply comparable 
models in assigning exposure to participants. 
Ideally, traffic distance measures should be 
replaced by objective particle concentration 
measures and models of near-road traffic-
related pollutants such as ultrafine particles of 
elemental carbon. Also, it would be important 
to consider various time lags for exposure.

The studies on T1DM found associa-
tions with ozone and sulfates. These pollut-
ants can be included in the future models 

for T2DM, because pollutants usually occur 
together in different proportions. Carbon 
monoxide, lead, oxidative metals, volatile 
organic compounds, and polycyclic aromatic 
hydrocarbons are other traffic-related pollut-
ants that may be more deleterious to health 
but have been given less consideration.

Adjusting for noise exposure is also essen-
tial because air pollution and noise can be 
correlated (Foraster 2013; Kim et al. 2012; 
Ross et al. 2011; Tétreault et al. 2013) and 
share health effects. Sørensen et al. (2013) 
recently reported a positive association 
between road-traffic noise and incident 
diabetes, and another large meta-analysis of 
10 epidemiologic studies by Cappuccio et al. 
(2010) found that both quality and quantity 
of sleep, which are related to noise, were 

significant predictors of the risk of T2DM. 
Consideration of noise is thus necessary in 
assessing the health effects of air pollution.

Also, socioeconomic variables should 
be adjusted on the spatial scale, apart from 
individual-level adjustment. Consideration 
for this spatial confounding is necessary when 
individual differences in health outcome are 
associated with neighborhood character-
istics such as neighborhood socioeconomic 
status (Sheppard et al. 2012). It is crucial 
that studies on diabetes risk consider estab-
lished diabetes risk factors including obesity, 
physical activity, and nutrition. Active 
and passive smoking should be considered 
when assessing the effect of air pollution. 
Lack of information on these creates a high 
risk for bias.

Figure 3. NO2 and risk of T2DM. Where I2 is the variation in effect estimates attributable to heterogeneity, 
D + L (DerSimonian and Laird) overall is the pooled random-effects estimate of all studies. I-V (inverse 
variance) overall is the pooled fixed-effects estimate of all studies. Weights are from random-effects 
analysis. %Weight (D + L) is the weight assigned to each study, based on the inverse of the within- and 
between-study variance. The size of the blue boxes around the point estimates reflects the weight 
assigned to each study. The summarized studies were adjusted for age, sex, BMI, smoking, and 
socioeconomic status. 

  %
 Risk ratio Weight
Source  (95% CI) (D + L) n
Males 

Andersen et al. 2012 1.02 (0.92, 1.13) 18.12 24,545
Brook et al. 2008 0.95 (0.76, 1.18) 8.83 3,452
Dijkema et al. 2011 0.97 (0.87, 1.09) 16.64 3,949
D + L subtotal (I 2 = 0.0%, p = 0.744) 0.99 (0.93, 1.07) 43.59
I-V subtotal 0.99 (0.93, 1.07)

Females
Brook et al. 2008 1.23 (1.00, 1.51) 9.41 4,182
Krämer et al. 2010 1.26 (1.11, 1.44) 14.80 1,775
Andersen et al. 2012 1.15 (1.02, 1.29) 16.64 27,273
Dijkema et al. 2011 1.03 (0.90, 1.16) 15.57 4,069
D + L subtotal (I 2 = 46.1%, p = 0.135) 1.15 (1.05, 1.27) 56.41
I-V subtotal 1.15 (1.07, 1.23)

D + L overall (I 2 = 58.4%, p = 0.025) 1.08 (1.00, 1.17) 100.00
I-V overall 1.07 (1.02, 1.13)

Reduced risk Increased risk 
10.5 2

Risk ratio

Table 4. Sensitivity analyses and heterogeneity measures.

Analyses Population
NO2  

OR (95% CI)

Heterogeneity 
measures  

[I 2 (%); p-value; Tau2]
PM2.5  

OR (95% CI)

Heterogeneity 
measures  

[I 2 (%); p-value; Tau2]
Main model (random 

effects)
Males 0.99 (0.93, 1.07) 0; 0.744; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.15 (1.05, 1.27) 46.1; 0.135; 0.0042 1.14 (1.03, 1.26) 0; 0.405; 0
Overall 1.08 (1.00, 1.17) 58.4; 0.025; 0.0063 1.10 (1.02, 1.18) 0; 0.473; 0

Studies assessing air 
pollution before DM 
diagnosis

Males 1.02 (0.92, 1.13) NA; NA; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.20 (1.10, 1.30) 12.5; 0.285; 0.0006 1.13 (1.02, 1.25) 0; 0.344; 0
Overall 1.12 (1.05, 1.19) 69.8; 0.036; 0.008 1.09 (1.01, 1.18) 0; 0.489; 0

Studies including both 
men and women

Males 0.99 (0.93, 1.07) 0; 0.744; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.11 (1.01, 1.23) 30.2; 0.238; 0.0023 1.13 (1.02, 1.25) 0; 0.344; 0
Overall 1.05 (0.98, 1.12) 34.9; 0.175; 0.0024 1.09 (1.01, 1.18) 0; 0.489; 0

Only longitudinal 
studies

Males 1.02 (0.92, 1.13) NA; NA; 0 1.04 (0.93, 1.17) 0; 0.486; 0
Females 1.20 (1.10, 1.30) 12.5; 0.285; 0.0006 1.14 (1.03, 1.26) 0; 0.405; 0
Overall 1.12 (1.05, 1.19) 69.8; 0.036; 0.008 1.10 (1.02, 1.18) 0; 0.473; 0

Meta-analysis using 
fixed-effects model

Males 1.00 (0.93, 1.07) 0; 0.744 1.04 (0.93, 1.17) 0; 0.486
Females 1.15 (1.07, 1.23) 46.1; 0.135 1.14 (1.03, 1.26) 0; 0.405
Overall 1.07 (1.02, 1.13) 58.4; 0.025 1.10 (1.02, 1.18) 0; 0.473

NA, not applicable. I 2 is the proportion of total variability explained by heterogeneity. Tau2 is a measure of among-study 
variance. 
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Other forms of bias such as the healthy 
survivor effect should be taken into account, 
especially in longitudinal studies. Raaschou-
Nielsen et al. (2013b) demonstrated asso-
ciations between diabetes mortality and NOx 
exposure; thus, diabetes patients exposed to air 
pollution could die and no longer participate, 
resulting in incorrect estimates of association 
if mortality was not taken into consideration.

No included study on this topic was done 
in developing countries. For generalizability 
of evidence, research should be extended 
to developing countries where air pollution 
(including indoor) is high. This could also 
help in understanding effects of different air 
pollution compositions. Indoor air pollu-
tion is also associated with diabetes as well as 
cardiovascular diseases (Lee et al. 2012) and is 
highly prevalent in developing nations (Lim 
et al. 2012).

Considering the ambiguity in dose–
response relationship in air pollution studies 
(Smith and Peel 2010), future studies should 
assess air pollution diabetes association in a 
dose–response manner. This will help in iden-
tifying the point in the dose spectrum where 
control will yield the most benefits for health 
policy (Smith and Peel 2010).

Overall, the existing evidence indicates a 
positive association of air pollution and T2DM 
risk, although there is high risk of bias. High-
quality longitudinal studies are needed (taking 
into consideration sources and composition of 
air pollution as well as biomarkers) to improve 
our understanding of this association.

RefeRences

Alberti KG, Zimmet PZ. 1998. Definition, diagnosis and 
classification of diabetes mellitus and its compli-
cations. Part 1: diagnosis and classification of 
diabetes mellitus provisional report of a WHO 
consultation. Diabet Med 15:539–553.

Albright JF, Goldstein RA. 1996. Airborne pollutants 
and the immune system. Otolaryngol Head Neck 
Surg 114:232–238.

Andersen ZJ, Hvidberg M, Jensen SS, Ketzel M, 
Loft S, Sørensen M, et al. 2011. Chronic obstruc-
tive pulmonary disease and long-term exposure to 
traffic-related air pollution: a cohort study. Am J 
Respir Crit Care Med 183:455–461.

Andersen ZJ, Raaschou-Nielsen O, Ketzel M, 
Jensen  SS, Hvidberg M, Loft S, et  al. 2012. 
Diabetes incidence and long-term exposure to air 
pollution: a cohort study. Diabetes Care 35:92–98.

Bauer M, Moebus S, Möhlenkamp S, Dragano N, 
Nonnemacher M, Fuchsluger M, et al. 2010. Urban 
particulate matter air pollution is associated 
with subclinical atherosclerosis: results from the 
HNR (Heinz Nixdorf Recall) study. Am J Cardiol 
56:1803–1808.

Brenner HH, Burkart V, Rothe H, Kolb H. 1993. Oxygen 
radical production is increased in macrophages 
from diabetes prone BB rats. Autoimmunity 15:93–98.

B r o o k  R D ,  J e r r e t t  M ,  B r o o k  J R ,  B a r d  R L , 
Finkelstein MM. 2008. The relationship between 
diabetes mellitus and traffic-related air pollution. 
J Occup Environ Med 50:32–38.

Brook RD, Rajagopalan S, Pope CA III, Brook  JR, 
Bhatnagar A, Diez-Roux AV, et al. 2010. Particulate 
matter air pollution and cardiovascular disease: an 
update to the scientific statement from the American 
Heart Association. Circulation 121:2331–2378.

Bui DS, Burgess JA, Matheson MC, Erbas B, Perret J, 
Morrison  S, et  al. 2013. Ambient wood smoke, 
traffic pollution and adult asthma prevalence and 
severity. Respirology 18:1101–1107.

Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. 2010. 
Quantity and quality of sleep and incidence of 
type 2 diabetes: a systematic review and meta-
analysis. Diabetes Care 33:414–420.

Chen H, Burnett RT, Kwong JC, Villeneuve PJ, 
Goldberg  MS, Brook RD, et  al. 2013. Risk of 
incident diabetes in relation to long-term exposure 
to fine particulate matter in Ontario, Canada. 
Environ Health Perspect 121:804–810; doi:10.1289/
ehp.1205958.

Chuang KJ, Yan YH, Cheng TJ. 2010. Effect of air pollu-
tion on blood pressure, blood lipids, and blood 
sugar: a population-based approach. J Occup 
Environ Med 52:258–262.

Coogan PF, White LF, Jerrett M, Brook RD, Su JG, 
Seto E, et al. 2012. Air pollution and incidence of 
hypertension and diabetes mellitus in black women 
living in Los Angeles. Circulation 125:767–772.

Dijkema MB, Mallant SF, Gehring U, van den Hurk K, 
Alssema M, van Strien RT, et al. 2011. Long-term 
exposure to traffic-related air pollution and 
type 2 diabetes prevalence in a cross-sectional 
screening-study in the Netherlands. Environ Health 
10:76; doi:10.1186/1476-069X-10-76.

Donath MY, Shoelson SE. 2011. Type 2 diabetes as an 
inflammatory disease. Nat Rev Immunol 11:98–107.

Egger M, Davey Smith G, Schneider M, Minder C. 
1997. Bias in meta-analysis detected by a simple, 
graphical test. BMJ 315:629–634.

Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, 
Schwartz JD, Kloog I, et al. 2014. Air pollution 
exposure and abnormal glucose tolerance during 
pregnancy: the Project Viva cohort. Environ Health 
Perspect 122:378–383; doi:10.1289/ehp.1307065.

Foraster M. 2013. Is it traffic-related air pollution or 
road traffic noise, or both? Key questions not yet 
settled! Int J Public Health 58:647–648.

Hathout EH, Beeson WL, Ischander M, Rao R, 
Mace JW. 2006. Air pollution and type 1 diabetes in 
children. Pediatr Diabetes 7:81–87.

Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, 
Mace JW. 2002. Role of exposure to air pollutants in 
the development of type 1 diabetes before and after 
5 yr of age. Pediatr Diabetes 3:184–188.

Jacquemin B, Schikowski T, Carsin AE, Hansell A, 
Krämer U, Sunyer J, et al. 2012. The role of air pollu-
tion in adult-onset asthma: a review of the current 
evidence. Semin Respir Crit Care Med 33:606–619.

Jones PW, Nadeau G, Small M, Adamek L. 2014. 
Characteristics of a COPD population categorised 
using the gold framework by health status and 
exacerbations. Respir Med 108:129–135.

Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. 2009. 
Lifestyle and environmental factors associated with 
inflammation, oxidative stress and insulin resistance 
in children. Atherosclerosis 203:311–319.

Kim KH, Ho DX, Brown RJ, Oh JM, Park CG, Ryu IC. 
2012. Some insights into the relationship between 
urban air pollution and noise levels. Sci Total 
Environ 424:271–279.

Kinney GL, Black-Shinn JL, Wan ES, Make B, Regan E, 
Lutz S, et al. 2014. Pulmonary function reduction 
in diabetes mellitus with and without chronic 
obstructive pulmonary disease. Diabetes Care 
37:389–395.

Krämer U, Herder C, Sugiri D, Strassburger K, 

Schikowski T, Ranft U, et al. 2010. Traffic-related 
air pollution and incident type 2 diabetes: results 
from the SALIA cohort study. Environ Health 
Perspect 118:1273–1279; doi:10.1289/ehp.0901689.

Krishna MT, Madden J, Teran LM, Biscione GL, Lau LC, 
Withers NJ, et al. 1998. Effects of 0.2 ppm ozone 
on biomarkers of inflammation in bronchoalveolar 
lavage fluid and bronchial mucosa of healthy 
subjects. Eur Respir J 11:1294–1300.

Künzli N, Bridevaux PO, Liu LJ, Garcia-Esteban R, 
Schindler C, Gerbase MW, et al. 2009. Traffic-
related air pollution correlates with adult-onset 
asthma among never-smokers. Thorax 64:664–670.

Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, 
Beckermann B, Gilliland F, et al. 2010. Ambient air 
pollution and the progression of atherosclerosis 
in adults. PLoS One 5:e9096; doi:10.1371/journal.
pone.0009096.

Lau J, Ioannidis JP, Schmid CH. 1997. Quantitative 
synthesis in systematic reviews. Ann Intern Med 
127:820–826.

Lee MS, Hang JQ, Zhang FY, Dai HL, Su L, Christiani DC. 
2012. In-home solid fuel use and cardiovas-
cular disease: a cross-sectional analysis of the 
Shanghai Putuo study. Environ Health 11:18; 
doi:10.1186/1476-069X-11-18.

Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya  K, 
Adair-Rohani H, et al. 2012. A comparative risk 
assessment of burden of disease and injury attrib-
utable to 67 risk factors and risk factor clusters in 
21 regions, 1990–2010: a systematic analysis for 
the Global Burden of Disease Study 2010. Lancet 
380:2224–2260.

Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. 2013. 
Epidemiological and experimental links between 
air pollution and type 2 diabetes. Toxicol Pathol 
41:361–373.

Lowell BB, Shulman GI. 2005. Mitochondrial dysfunc-
tion and type 2 diabetes. Science 307:384–387.

Malmqvist E, Jakobsson K, Tinnerberg H, Rignell-
Hydbom A, Rylander L. 2013. Gestational diabetes 
and preeclampsia in association with air pollu-
tion at levels below current air quality guidelines. 
Environ Health Perspect 121:488–493; doi:10.1289/
ehp.1205736.

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA 
Group. 2010. Preferred reporting items for system-
atic reviews and meta-analyses: the PRISMA 
statement. Int J Surg 8:336–341.

O’Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, 
Economides PA, et al. 2005. Diabetes enhances 
vulnerability to particulate air pollution-associated 
impairment in vascular reactivity and endothelial 
function. Circulation 111:2913–2920.

Papazafiropoulou AK, Kardara MS, Pappas SI. 2011. 
Environmental pollution and diabetes mellitus. 
Recent Pat Biomark 1:44–48.

Pearson JF,  Bachireddy C,  Shyamprasad S, 
Goldfine AB, Brownstein JS. 2010. Association 
between fine particulate matter and diabetes 
prevalence in the U.S. Diabetes Care 33:2196–2201.

Pelle AJ, Loerbroks A, Widdershoven JW, Denollet J. 
2012. Heart failure and comorbid diabetes mellitus 
or chronic obstructive pulmonary disease: effects 
on mood in outpatients. Int J Cardiol 154:216–217.

Puett RC, Hart JE, Schwartz J, Hu FB, Liese AD, Laden F. 
2011. Are particulate matter exposures associated 
with risk of type 2 diabetes? Environ Health Perspect 
119:384–389; doi:10.1289/ehp.1002344.

Purkayastha S, Zhang G, Cai D. 2011. Uncoupling 
the mechanisms of obesity and hypertension by 
targeting hypothalamic IKK-β and NF-κB. Nat Med 
17:883–887.

Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, 
Stafoggia M, Weinmayr G, et al. 2013a. Air pollution 



Ambient air pollution and diabetes: systematic review

Environmental Health Perspectives • volume 123 | number 5 | May 2015 389

and lung cancer incidence in 17 European cohorts: 
prospective analyses from the European Study of 
Cohorts for Air Pollution Effects (ESCAPE). Lancet 
Oncol 14:813–822.

Raaschou-Nielsen O, Andersen ZJ, Hvidberg  M, 
Jensen SS, Ketzel M, Sørensen M, et al. 2011. 
Air pollution from traffic and cancer incidence: 
a Danish cohort study. Environ Health 10:67; 
doi:10.1186/1476-069X-10-67.

Raaschou-Nielsen O, Sørensen M, Ketzel M, Hertel O, 
Loft  S, Tjønneland A, et  al. 2013b. Long-term 
exposure to traffic-related air pollution and 
diabetes-associated mortality: a cohort study. 
Diabetologia 56:36–46.

Rajagopalan S, Brook RD. 2012. Air pollution and 
type 2 diabetes: mechanistic insights. Diabetes 
61:3037–3045.

Ross Z, Kheirbek I, Clougherty JE, Ito K, Matte T, 
Markowitz S, et al. 2011. Noise, air pollutants and 
traffic: continuous measurement and correlation 
at a high-traffic location in New York City. Environ 
Res 111:1054–1063.

Schikowski T, Mills IC, Anderson HR, Cohen A, Hansell A, 
Kauffmann F, et al. 2014. Ambient air pollution: a 
cause for COPD? Eur Respir J 43:250–263.

Sheppard L, Burnett RT, Szpiro AA, Kim SY, Jerrett M, 
Pope CA III, et al. 2012. Confounding and exposure 
measurement error in air pollution epidemiology. 
Air Qual Atmos Health 5:203–216.

Sjöholm A, Nyström T. 2006. Inflammation and the 
etiology of type 2 diabetes. Diabetes Metab Res 
Rev 22:4–10.

Smith KR, Peel JL. 2010. Mind the gap. Environ Health 
Perspect 118:1643–1645; doi:10.1289/ehp.1002517.

Sørensen M, Andersen ZJ, Nordsborg RB, Becker T, 
Tjønneland A, Overvad K, et al. 2013. Long-term 
exposure to road traffic noise and incident diabetes: 
a cohort study. Environ Health Perspect 121:217–222; 
doi:10.1289/ehp.1205503.

Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, 
Rennie D, et al. 2000. Meta-analysis of observa-
tional studies in epidemiology: a proposal for 
reporting. Meta-analysis Of Observational Studies in 
Epidemiology (MOOSE) group. JAMA 283:2008–2012.

Sun Q, Yue P, Deiuliis JA, Lumeng CN, Kampfrath T, 
Mikolaj MB, et al. 2009. Ambient air pollution exag-
gerates adipose inflammation and insulin resis-
tance in a mouse model of diet-induced obesity. 
Circulation 119:538–546.

Tétreault  LF,  Perron S,  Smargiassi  A.  2013. 
Cardiovascular health, traffic-related air pollution 
and noise: are associations mutually confounded? 
A systematic review. Int J Public Health 58:649–666.

Thiering E, Cyrys J, Kratzsch J, Meisinger C, 
Hoffmann  B, Berdel D, et  al. 2013. Long-term 
exposure to traffic-related air pollution and insulin 
resistance in children: results from the GINIplus and 
LISAplus birth cohorts. Diabetologia 56:1696–1704.

van den Hooven EH, Jaddoe VW, de Kluizenaar Y, 
Hofman A, Mackenbach JP, Steegers EA, et al. 
2009. Residential traffic exposure and pregnancy-
related outcomes: a prospective birth cohort study. 
Environ Health 8:59; doi:10.1186/1476-069X-8-59.

Vojtková J1, Ciljaková M, Michnová Z, Turcan T. 2012. 
Chronic complications of diabetes mellitus related 
to the respiratory system. Pediatr Endocrinol 
Diabetes Metab 18:112–115.

Whitsel EA, Quibrera PM, Christ SL, Liao D, Prineas RJ, 
Anderson GL, et al. 2009. Heart rate variability, 
ambient particulate matter air pollution, and 
glucose homeostasis: the environmental epidemi-
ology of arrhythmogenesis in the women’s health 
initiative. Am J Epidemiol 169:693–703.

Xu X, Yavar Z, Verdin M, Ying Z, Mihai G, Kampfrath T, 
et al. 2010. Effect of early particulate air pollu-
tion exposure on obesity in mice: role of p47phox. 
Arterioscler Thromb Vasc Biol 30:2518–2527.

Yan YH, Chou CCK, Lee CT, Liu JY, Cheng TJ. 2011. 
Enhanced insulin resistance in diet-induced obese 
rats exposed to fine particles by instillation. Inhal 
Toxicol 23:507–519.

Zanobetti A, Bind MA, Schwartz J. 2008. Particulate air 
pollution and survival in a COPD cohort. Environ 
Health 7:48; doi:10.1186/1476-069X-7-48.

Zanobetti A, Schwartz J. 2001. Are diabetics more 
susceptible to the health effects of airborne 
particles? Am J Respir Crit Care Med 164:831–833.


